

FACULTY: BASIC AND APPLIED SCIENCES

DEPARTMENT: PHYSICAL AND CHEMICAL SCIENCES

FIRST SEMESTER EXAMINATIONS

2017/2018 ACADEMIC SESSION

ILARA MOKIN

COURSE CODE: CHM 201

COURSE TITLE: INORGANIC CHEMISTRY I

PAX PROPE

DURATION: 2 HOURS	HOD's SIGNATURE
Matriculation Number:	TOTAL MARKS: 60
INSTRUCTIONS: ATTEMPT TWO QUESTIONS FROM EACH SECTION	
SECTION A [30 Marks]	
QUESTION ONE	
 A. Write complete, balanced equations for the following processes: i. The reaction of borane B₂H₆ with oxygen ii. The preparation of borazine 	[4 Marks]
B. Draw the structure of an inorganic benzene	[1 Mark]
C. State 2 major differences between graphite and diamond	[4 Marks]
D. Predict the product of this reaction $SiCl_{4(1)} + 2H_2O_{(1)} ==>$	[1 Mark]
E. Starting with impure N ₂ and H ₂ , describe completely the Haber p	
ammonia	[4 Marks]
F. Draw the molecular structure of Hydrazine	[1 Mark]
QUESTION TWO	
 A. Describe the chemical process for the production of H₂O₂ B. Explain why ozone is useful in water purification C. Draw structures for each of the following species i. ClF₃ ii. IF₇ iii. Cl₂O₇ 	[2 Marks] [3 marks] [3 Marks]
D. On the basis of energy, explain why fluorine is a more reactive el	
when compared to the reactivity of the other halogens	[2 Marks]
 E. Give the IUPAC names to the following coordination compounds i. K₂[Co(NH₃)₂Cl₄] ii. [Co(NH₃)₄Cl₂]Cl 	s [3 Marks]
F. What is crystal field theory	[2 Marks]
QUESTION THREE	
A. Compounds I and II are isomeric, exhibiting different reaction	ns with silver (I) nitrate (V).
I: $[PtCl_2(NH_3)_4]^{2+}(Br^-)_2$	

- II: $[PtBr_2(NH_3)_4]^{2+}(Br^-)_2$
- a. What is the oxidation number of platinum in each of the compounds? [2 Marks]
- b. What is the coordination number of platinum in each of the compounds? [2 Marks]

- c. What shape would you expect for the complex ion in compound I? [2 Marks]
- d. State the products of the reaction between compound I and silver (I) nitrate (V).

[2 Marks]

- B. Chromium, manganese and iron are *d*-block elements and their atomic numbers are 24, 25 and 26 respectively.
 - I. Explain what is *d*-block elements

[2 Marks]

- II. Give two characteristic properties of the *d*-block elements, illustrate your answer by reference to the above elements [2 Marks]
- III. Give the electronic configuration of Cr(III) ion, Mn(VI) ion and Fe metal

[3 Marks]

SECTION B

ATTEMPT ANY TWO QUESTIONS FROM THIS SECTION

1.

a. List three properties which illustrate the diagonal relationship between lithium and magnesium.

[3marks]

- b. Describe the properties of an ore which is to be concentrated by
 - i. Leaching with an alkali

[1mark]

ii. Leaching with an acid

[1mark]

iii. Flotation

[1mark]

iv. Panning

- [1mark]
- c. Explain why the compounds of Beryllium are covalent, and those of the other group II elements are predominantly ionic. [3marks]
- d. Magnesium burns in air to give a white ash which when dissolved in water produces an odour of ammonia. Suggest with the aid of balanced chemical equations an explanation for this observation.

[2marks]

e. Complete the following reactions

[3marks]

- i. $Ca + H_2O_{(1)}$
- ii. $Mg_3P_2 + HCl$
- iii. $Xe_{(g)} + F_{2(g)}$
- 2. a. A pure nuclide ${}^{50}_{24}Y$ is bombarded with alpha particles undergoes two reactions to produce neutrons and deuterons as product particles. Write equations showing the formation of the possible products nuclides

[2marks]

b. A radioactive nuclide has an initial activity of 28dis/min; 30 minutes later the activity is 14 dis/min.

How many atoms of the radioactive nuclide were there originally?

[3marks]

c. Explain how Argon reacts with Fluorine to form a compound.

[5marks]

- d. It has been suggested that hydrogen could be placed in Group 1 or Group 17 of the periodic table.

 Argue for or against each of these positions. [5marks]
- 3. a. Enumerate the differences and similarities between the chemistry of group I and group II elements [9marks]
 - b. Mention at least three uses of name elements in Groups 1, 2 and 18 [6marks]